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Objectives

e Improve understanding of foam properties and
proppant transportation using different fracturing
fluids

o Study of foam behavior under different conditions
o Quantification of proppant transported and comparison

with other fluids
e Translate improved understanding into increased

recovery

SHALE ~



Hydraulic Fracturing
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e Water 2016: 3MM to 8MM gal/well
O Disposal and sourcing issues
® Proppant 2016: 1700 Ibs/ft

O Proppant Consumption is indicative of the
importance of proppant placement
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Laboratory Apparatus - Experimental Approach

e Proppant Transport Test Bench
(PTTB)

® 2,400psi (160 bar) operating
pressure (N, only)

e Foam Rheology and Stability
Measurements are also possible

e Benchmark different types of
fluids and proppants

Sight glass image
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Proppant Transport: Variables and Parameters
to Consider

Total Flow & Gas %
O Water, Energized Fluid and Foam
o Flow and Pressure Energized Fluid Foam Mist
Sand Addition Rate (2 hoppers in line) Dilwe  Semi-Dilwte | Intermediae Condensate
o Sand Loading - SAV position ‘ : i
o Total Quantity

Wet Limit Dry Limit

O Runtime
Proppant

o Size and shape ‘ ! i

o Material 0 0.1 0.2 04 0.64-0.74 0.94-098 1
Surfactant & Thickener Gas Volume Fraction (¢)

o Concentration
O Properties (type)
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Proppant Transport Water vs. N2 foam

SG @: 1 inch SG @: 1 inch

e Water: Mainly
translational transport

e Foam: Mainly

suspended transport

@airtiquide @ air Liquide

Water — Proppant 80% Foam — Proppant
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Proppant Transportation - Fluid Comparison

Water, Foam and Thickened Foam: % flows, sand load 5.4 g/sec
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*Results: average from multiple tests
* 0.75 gpm, sand loading = 1 Ib/gal Transport Performance:

* 1.5 gpm, sand loading = 0.5 Ib/gal

1.5 gpm > 0.75 gpm

Thickened Foam > Foam without thickener > Water
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Proppant Transportation
Lab Results and CFD Comparison
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Experimental Results - Varying Foam Quality

Water & Foam: different % and flow. Sand load 8.6 g/sec
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*Results: average from multiple tests

90% gives the best performance at 0.75gpm, though not at 1.5 gpm
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Extending to fracture geometry with
Computational Fluid Dynamics

® A CFD (ANSYS - Fluent) model for proppant el
transport has been developed (Kong et al.) —— =

e CFD parameters tuned to match lab data
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Conclusions

e We have a working Proppant Transport Test Bench (PTTB), new tool to
explore the operating space.
O High pressure (supercritical) foams
O Quantification and visualization of proppant transport
® Tuning a Fluent model to model the proppant transport shows
promising first results.

o Simulation results correlate with the weight of material per collection point
of test bench

O Using the model for realistic fracture dimensions shows potential for foams.
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Path Forward

e Use laboratory proppant transport tests to optimize
surfactant, thickener and foam quality selection
e Use CFD to extend to fracture dimensions

e Optimized proppant transport increases propped area
o  ~50% increase appears feasible
o Is equivalent productivity increase achievable?
o Field confirmation of laboratory results required
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